If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+100x=7500
We move all terms to the left:
4x^2+100x-(7500)=0
a = 4; b = 100; c = -7500;
Δ = b2-4ac
Δ = 1002-4·4·(-7500)
Δ = 130000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{130000}=\sqrt{10000*13}=\sqrt{10000}*\sqrt{13}=100\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-100\sqrt{13}}{2*4}=\frac{-100-100\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+100\sqrt{13}}{2*4}=\frac{-100+100\sqrt{13}}{8} $
| -16g=20-20g | | 5(-2x)=4x+x | | -72(x-15.6)=9 | | 17t-8t=9 | | -3b-14=-2b | | 5y+1=3y=13 | | 6x-5=9-5x | | 10x(x-1)=2x-7 | | 2(5+9/7)x=0 | | 13(y-4)-3(y-9=5(y+4) | | 12000+5x=15x | | 5y+5/8=10 | | 5x2+1=4x-7 | | 5x2-4x+10=0 | | (x^2)(x+2)=85x-154 | | 0.5(14+20)h=85 | | (1+9/7)x^2-2(5+9/7)x+16+9/7=0 | | 1/2(14+20)h=85 | | 0.6x+5÷4=0.28x+1.16 | | 3/2(5/9x+4/27)=3 | | 0.6x+4÷5=0.28x+1.16 | | x=932+1/1.5 | | 1+1,5x=1400 | | 1+1,5x=1500 | | P+1.4p=4.8 | | 1.4x=6 | | -4x^2+3x+30=0 | | 36+28m=0 | | 36+2836m=0 | | 5t2-7t=4 | | 2x-4=-3x+12 | | 9^x+3^x=30 |